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Abstract. A system of generalized coherent states (CS) for the de Sitter (dS) group obeying the
Klein–Gordon equation and corresponding to the massive spin-0 particles over the dS space is
considered. This allows us to construct the quantized scalar field by resolution over these CS;
the corresponding propagator is computed by the method of analytic continuation to the complex
dS space and coincides with expressions obtained previously by other methods. Considering the
case of spin- 1

2 , we establish the connection of the invariant Dirac equation over the dS space with
irreducible representations of the dS group. The set of solutions of this equation is obtained in
the form of the product of two different systems of generalized CS for the dS group. Using these
solutions the quantized Dirac field over dS space is constructed and its propagator is found. It
is a result of the action of some dS invariant spinor operator onto the spin-0 propagator with an
imaginary shift of a mass. We show that the constructed propagators possess the dS invariance and
causality properties.

1. Introduction

In the last few years considerable progress in the theory of massive scalar field over the de
Sitter (dS) space has been attained due to using new mathematical methods. In [1], it is shown
that the two-point Wightman function W(x, y), which corresponds to this field and obeys the
conditions of causality, dS invariance and positive definiteness, can be obtained as a boundary
value of the holomorphic function W(z1, z2) defined over the complex dS space. In turn, the
function W(z1, z2) can be represented as an integral over so-called ‘plane waves’; these plane
waves obey the Klein–Gordon equation over the dS space, and generalize the usual plane
waves over the Minkowski space. In [2], to examine the quantum fields over the dS space,
we applied the method of generalized coherent states (CS) which has been fruitfully used in
various physical problems (see [3] and references therein). In the mentioned paper we showed
that the above ‘plane waves’ are CS for the dS space to within the coordinate-independent
multiplier, and their scalar product coincides with the two-point function considered in [1].

Nevertheless, even in the spin-0 case some questions remain unanswered. Can we
construct the quantized field by the expansion over the mentioned ‘plane waves’ in such a
way that its propagator will be equal to W(x, y)−W(y, x)? What is the explicit form of this
propagator? Passing to the case of spin- 1

2 we see that the usual methods are insufficient for the
consistent construction of a quantized field theory over the dS space. Indeed, a lot of papers
were concerned with obtaining the solutions of the covariant ([4] and references therein)
and group theoretical [5] Dirac equation over the dS space by the method of separation of
variables. However, all these solutions have a complicated form which considerably troubles
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the construction of the quantized field theory. Only in the little-known paper [6] has the
summation over one of such a set of solutions been performed; the resulting propagator is
not dS invariant and does not obey the causality principle. On the other hand, in [7] a spinor
propagator was found starting from the demands of dS-invariant Dirac equation satisfaction,
dS invariance and the boundary conditions, but the quantized field corresponding to it was not
found. However, in the anti-dS space, the quantized spinor fields with an invariant and causal
propagator was constructed long ago [8].

In the present paper we show that all these problems may be solved using the method of
generalized CS, and build the theory of massive quantized scalar and spinor fields over the
dS space using this method. The present paper is composed as follows. In section 2, bearing
in mind the application to the spinor field, we give the method of construction of CS in the
maximally general form for which Perelomov’s definition is a special case.

In section 3 we consider the scalar field. In section 3.1 we consider the dS space, its
symmetry group and the classification of its irreducible representations. The realization of
the dS group as a group of transformations of a Lemaitre coordinate system is also given.
Following [2], in section 3.2 we realize the dS group as a group of transformations of functions
over R

3, and then construct the CS system for the dS space which corresponds to the massive
spin-0 particles and obeys the dS-invariant Klein–Gordon equation. The scalar product of two
CS is the two-point function considered in [1]; from here its dS invariance follows immediately,
which is proved in [1] by other methods. The integral defining this two-point function may
be regularized, passing to the complex dS space. For the sake of completeness we reproduce
some results of the paper by Bros and Moschella [1] and compute the two-point function
over the complex dS space in explicit form. In section 3.3 we construct the quantized scalar
field, by the expansion over CS constructed in section 3.2. The propagator of this field is the
difference between the two-point function and the permuted one. We show that the boundary
value on the real dS space of the two-point function computed in section 3.2 coincides with
the Green function obtained previously by other methods [9,10]. The propagator which is the
difference between two two-point functions coincides with that obtained previously starting
from the demands of the dS invariance and the satisfaction of the Klein–Gordon equation
and the boundary conditions [11]. Thus, the relation between different expressions for the
propagator available in the literature is established (for a review of papers concerning the
propagators over the dS space, see [12]).

In section 4 we consider the spinor field. In section 4.1 we consider the dS-invariant
Dirac equation and show that the corresponding representation of the dS group is irreducible
and falls under the classification listed in section 3.1. In addition, we show that this equation
admits the reduction to the covariant form by a much simpler method than that proposed
previously [7,13]. In section 4.2 we construct the CS system for the four-spinor representation
of the dS group in the form of 4× 2 matrices. Solutions of the dS-invariant Dirac equation are
the products of these CS and scalar CS obtained in section 3.2. In fact, these solutions are the
more compact form of the spinor ‘plane waves’ obtained in [2]. The invariance properties of
these solutions allow us to construct a dS-invariant two-point function and compute it passing
to the complex dS space. In section 4.3 we construct the quantized spinor field using these
solutions; its propagator is expressed by the boundary values of the two-point function obtained
in section 4.2 and coincides with the expression obtained a priori in [7] to within the constant
multiplier.

In section 5 we briefly summarize the results of this paper.
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2. Definition of the CS system

Let G be a Lie group and G � g �→ T (g) be its representation in a linear vector space H with
operators T (g). Consider some vector |ψ0〉 ∈ H yielding the set of vectors

{|ψg〉 ≡ T (g)ψ0,∀g ∈ G}.
We define the equivalence relation∼ between the vectors of the H space coordinated with the
product over H in the following way. Let |ξ ′〉 and |ξ ′′〉 be the vectors of H . Then we assume
the existence of a product (which, in general, is not the mapping from H ×H to C) such as

|ξ ′〉 ∼ |ξ ′′〉 ⇒ 〈ξ ′|ξ ′〉 = 〈ξ ′′|ξ ′′〉.
Consider the subgroup H of G which remains unchanged, the equivalency class being generated
by |ψ0〉:

h ∈ H ⇐⇒ T (h)|ψ0〉 ∼ |ψ0〉.
It is obvious that the number of unequivalent elements of the above-mentioned set |ψg〉 is less
than the number of elements of the group G because the elements g and gh, h ∈ H generate
the equivalent vectors. Then, in fact, the set of unequivalent vectors is determined by the set
of right equivalency classes gH which compose the symmetric space G/H.

The mapping G/H � ξ �→ gξ ∈ G, such that for an arbitrary g1 ∈ G the equality

g1gξ = gξ ′h h ∈ H ξ ′ = ξg1 (2.1)

is valid, is called the lifting from the G/H space to the G group, where ξ �→ ξg is the action
of G over the G/H space. We shall use the following simple method of construction of
liftings. Let ξ◦ be a ‘standard’ point of the G/H space. Let us denote as gξ the set of
transformations parametrized by points ξ of the G/H space so that ξ = (ξ◦)gξ . It is easily seen
that ξ �→ gξ is a lifting. Indeed, let g1 ∈ G be an arbitrary transformation from the group G.
Then the transformations g1gξ and gξ ′ both transform the point ξ◦ into the point ξ ′; then the
transformation (g1gξ )

−1gξ ′ remains the point ξ◦ unchanged and therefore belongs to H.
The choice of lifting is the choice of the representative gξ ∈ G for each equivalency class

ξ . Then the set of all unequivalent vectors |ψg〉 is given by the CS system

|ξ〉 = T (gξ )|ψ0〉.
The major property of the CS system is its G invariance which follows from (2.1):

T (g)|ξ〉 ∼ |ξg〉 g ∈ G. (2.2)

Perelomov’s definition for the CS system is narrower than ours as he assumes that ∼ is the
equality within the phase:

|ξ ′〉 ∼ |ξ ′′〉 ⇔ |ξ ′〉 = eiα|ξ ′′〉 α ∈ R.

In a certain sense, our definition is the further generalization of a so-called vector-like CS [14].
Another difference of our definition from Perelomov’s one is that we, following [14], do not
assume the compactness of the H subgroup.

3. Scalar field

3.1. Representations of the dS group

The dS space is a four-dimensional hyperboloid determined by the equation ηABx
AxB =

−R2 in the five-dimensional space with the pseudo-Euclidean metric ηAB (A,B, . . . =
0, . . . , 3, 5) of signature (+ − − − −). Except for the explicitly covariant vierbein indices,
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all the other indices are raised and lowered by the Galilean metric tensors ηAB and ηµν . The
metric in coordinates xµ has the form

gµν = ηµν − xµxν

R2χ2
gµν = ηµν +

xµxν

R2
(3.1)

where χ = (1 + x · x/R2)
1
2 . The symmetry group of the dS space is the dS group SO(4, 1)

with ten generators JAB = −JBA which obey commutation relations

[JAB, JCD] = ηADJBC + ηBCJAD − ηACJBD − ηBDJAC. (3.2)

Let us define Pµ = R−1J 5µ; these generators correspond to translations.
We denote the action of the arbitrary element g ∈ SO(4, 1) of the dS group over the dS

space as x �→ xg . The stationary subgroup of an arbitrary point of dS space is SO(3, 1); then
we can identify the dS space with the set of equivalency classes SO(4, 1)/SO(3, 1).

Let us construct the operators

�±
i = Pi ± 1

R
J0i . (3.3)

Using the commutation relations (3.2) it is easy to show that

[�+
i , �

+
k ] = [�−

i , �
−
k ] = 0. (3.4)

We can take the operators Π+,Π−, P 0 and Jik as a new set of generators of the dS group;
they generate subgroups which we denote as T +, T −, T 0 and R = SO(3), respectively. The
groups T ± are abelian by the virtue of (3.4). Besides (3.4), the commutation relations are

[�+
i , �

−
k ] = − 2

R
P 0δik +

2

R2
Jik [P 0, Jik] = 0

[�±
i , Jkl] = �±

k δil −�±
l δik [P 0,Π±] = ± 1

R
Π±.

(3.5)

The dS group has two independent Casimir operators:

C2 = − 1

2R2
JABJ

AB C4 = WAW
A (3.6)

where

WA = 1

8R
εABCDEJ

BCJDE (3.7)

is an analogue of the Pauly–Lubanski pseudo-vector in the Poincaré group. There are two
series of the dS-group irreducible representations [15]:

(1) πp,q , p = 1
2 , 1, 3

2 , . . . ; q = p, p − 1, . . . , 1 and 1
2 . The eigenvalues of the Casimir

operators in this series are

R2C2 = p(p + 1) + q(q − 1)− 2
R2C4 = p(p + 1)q(q − 1).

(3.8)

(2) νm,s . The quantity s is a spin, s = 0, 1
2 , 1, . . . ; the quantity m corresponds to a mass

at the integer spin m2 > 0; at the half-integer spin m2 > 1
4R2 ; at s = 0, m2 > − 2

R2 :

C2 = −m2 + R−2(s(s + 1)− 2) (3.9)

C4 = −m2s(s + 1). (3.10)

The generators of five-dimensional rotations are

J (l)AB = (xAηBC − xBηAC)∂C.
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As the fifth coordinate is not independent, x5 = Rχ, then ∂5 = 0 and we obtain the generators
of the scalar representation:

P (l)
µ = χ∂µ J (l)µν = (xµηνσ − xνηµσ )∂σ . (3.11)

They compose the representation νm,0 since

W
(l)
A = 0 ⇒ C

(l)
4 = 0. (3.12)

As (−g)
1
2 = 1/χ , then for the second-order Casimir operator in the scalar representation we

obtain from (3.6) and (3.11)

C
(l)
2 = � ≡ (−g)−

1
2 ∂µ((−g)

1
2 gµν∂ν).

Then using (3.9) we obtain that in the representation νm,0 the Klein–Gordon equation

(� +m2 + 2R−2)ψ = 0 (3.13)

is satisfied.
By the virtue of (3.4) in the scalar representation the generators (3.3) are the derivatives

along certain new coordinates called the Lemaitre coordinates:

Π± = ∂

∂y±
. (3.14)

Substituting (3.11) and (3.14) into rhs and lhs of equation (3.3) respectively, we obtain the
connection of y± with xµ. We denote a new time coordinate independent of y± as y0

± = τ±;
then the transformation rules from the old coordinates to the new ones are

y± = xe∓τ±/R e±τ±/R = χ ± x0

R
. (3.15)

The operator P0 in the new coordinates takes the form

P
(l)
0 = ∂

∂τ±
∓ 1

R
y±

∂

∂y±
.

The finite transformations belonging to the subgroups T ± and T 0, which we denote as -±
and -0 respectively, act in the scalar representation in the following way:

g = -±(a) ≡ exp(Π±aR) :

{
y± �−→ y′± = y± + aR

τ± �−→ τ ′± = τ±

g = -0(ε) ≡ exp(P0εR) :

{
y′± = y±e∓ε

τ ′± = τ± + εR.

(3.16)

We assume that the transformations act in the order from right to left.

3.2. Scalar CS

The dS group is isomorphic to the group of conformal transformations of the three-dimensional
real space. We denote the vector of this space as w. There exist two different conformal
realizations of the dS group; the first one corresponds to the upper sign, and the second one to
the lower one in the following formulae. The generators take the form

RΠ∓ = − ∂

∂w
RΠ± = w2 ∂

∂w
− 2w

(
w

∂

∂w

)

RP0 = ±w
∂

∂w
Jik = wk

∂

∂wi

− wi

∂

∂wk

.
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They obey commutation relations (3.4) and (3.5). Finite transformations have the form

g = -∓(a) : wg = w − a

g = -±(a) : wg = w + aw2

1 + 2wa + w2a2

g = -0(ε) : wg = we±ε.

(3.17)

Let us define two different representations of the dS group acting over the space of functions
dependent on w:

T ±
σ (g)f (w) = (α±w(g))σ f (wg−1)

where σ ∈ C and

α±w(g) = det

(
∂wi

g−1

∂wk

)− 1
3

=




1 g ∈ T ∓�R
e±ε g = -0(ε)

1− 2aw + a2w2 g = -±(a).

We denote these representations as T ±
σ . It is easily seen that the generators in these

representations are

RΠ∓ = − ∂

∂w
RΠ± = w2 ∂

∂w
− 2w

(
w

∂

∂w

)
+ 2σw

RP0 = ±
(

w
∂

∂w
− σ

)
Jik = wk

∂

∂wi

− wi

∂

∂wk

.

(3.18)

We define the scalar product in the space of representation T ±
σ as follows:

〈f1|f2〉 =
∫

R3
d3w f ∗1 (w)f2(w).

It is not difficult to show that it is dS invariant at

σ = σ0 ≡ − 3
2 − iµR µ ∈ R.

Then the representation T ±
σ0

is unitary; but it is reducible since we do not assume the square
integrability of functions carrying it, and therefore the space contains the invariant subspace
of square integrable functions. Such an extension of the representation space is necessary for
the construction of CS with noncompact stability subgroups [14].

The equality

gy± = -±(y±/R)-0(τ±/R)

defines the lifting in the sense of (2.1) since the transformation gy± transforms the origin into the
point with coordinates y±. As an equivalency relation we can take the equality. Then the vector
|ψ0〉, being Lorentz-invariant under the action of the representation T ±

σ , is |ψ0〉 = (1−w2)σ .
Then we can construct the CS system

|x,±; σ 〉 = T ±
σ (gy±(x))|ψ0〉

where we assume that the Lemaitre coordinates are dependent on xµ by the
transformations (3.15). The explicit form of CS as a function of w is

|x,±; σ 〉 ≡ 1(0)±
w (x; σ) = (1− w2)σ ϕ

(0)±
kw

(x; σ)
where

ϕ
(0)±
k (x; σ) =

(
χ ± k · x

R

)σ
kµw =

(
1 + w2

1− w2
,± 2w

1− w2

)
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then kw · kw = 1. From (2.2) the transformation rules

1(0)±
w (xg; σ) = (α±w(g))σ1

(0)±
w′ (x; σ) w′ = wg−1 (3.19)

follow.
The functions ϕ(0)±

k (x; σ0) obey the dS-invariant Klein–Gordon equation (3.13) and were
known previously in this capacity [1, 16]. Under R →∞ these functions pass into the usual
plane waves over the Minkowski space.

Let us consider the scalar product of two CS in the representation T ±
σ0

; it is easily seen
that the scalar products in the representations T +

σ0
and T −

σ0
are equal to each other. This may be

proved considering the inversion w �→ −w/w2 which yields

1(0)±
w (x; σ0) �→ (−w2)−σ01(0)∓

w (x; σ0).

Then a two-point function can be defined as

〈 2
x,±; σ0| 1

x,±; σ0〉 =
∫

R3
d3w1(0)±

w (
1
x; σ0)1

(0)±
w (

2
x; σ ∗0 ) = 1

8W (0)(
1
x,

2
x).

It is dS invariant by virtue of the unitarity of the representation T ±
σ0

:

W (0)(
1
xg,

2
xg) = W (0)(

1
x,

2
x) g ∈ SO(4, 1).

We can obtain another expression for W (0)(
1
x ,

2
x) passing to the integration over a three-

sphere [1]. Let us consider the unit Euclidean four-vector la , a, b = 1, 2, 3, 5 dependent on
the three-vector w:

law =
(
∓ 2w

1 + w2
,

1− w2

1 + w2

)
lawl

a
w = 1.

Then computing the Jacobian of the transformation from w to lw we obtain

W (0)(
1
x,

2
x) =

∫
S3

d3l

l5


 1
x0 + la

1
xa

R



−iµR− 3

2

 2
x0 + la

2
xa

R




iµR− 3
2

. (3.20)

The function W (0)(
1
x,

2
x) coincides with the two-point function over the dS space considered

in [1]. In general, the integral (3.20) diverges because |ψ0〉 is not square integrable over R
3.

We can make the integral meaningful by passing to the complex dS space with subsequent
computation of the boundary values over the real dS space [1].

Let us consider the domain D± in the complex dS space (we shall denote its points as ζ )
defined as

±Im ζ 0 > 0 Im ζAIm ζA > 0.

The domain D+ (D−) is the domain of analyticity of the functions ϕ(0)±
k (ζ ; σ0) (ϕ(0)±

k (ζ ; σ ∗0 )).
Then the integral (3.20) converges at

1
ζ ∈ D+ and

2
ζ ∈ D− since the three-sphere volume is

finite. Let us choose the points as

1
ζA = (i cosh v, 0, i sinh v)

2
ζA = (−i, 0, 0) v ∈ R. (3.21)

Then using the formula [17]

2F1(a, b; c; z) = 21−c8(c)

8(b)8(c − b)

∫ π

0
dϕ

(sin ϕ)2b−1(1 + cosϕ)c−2b

(1− z
2 + z

2 cosϕ)a
(3.22)
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we obtain

W (0)(
1
ζ,

2
ζ) = π2

2
e−πµR

2F1

(
−σ ∗0 ,−σ0; 2; 1− ρ

2

)

where ρ = R−2
1
ζ A

2
ζ A. The expression obtained in [1] is in fact equivalent to the above

expression to within a constant multiplier.

3.3. Quantized spin-0 field

Let us define the quantized spin-0 field in the dS space as

φ(0)(x) =
∫

R3
d3w(1(0)+

w (x; σ0)a
(+)(w) + 1(0)−

w (x; σ ∗0 )a(−)†(w))

where a(±)(w) and a(±)†(w) are two sets of bosonic creation–annihilation operators with the
commutation relations

[a(±)(w), a(±)†(w′)] = δ(w,w′)

where δ(w1,w2) is the δ-function over R
3 and all other commutators vanish. Now we compute

the propagator

[φ(0)(
1
x), φ(0)†(

2
x)] ≡ 1

8G
(0)(

1
x,

2
x) = 1

8 (W (0)(
1
x,

2
x)−W (0)(

2
x,

1
x)) (3.23)

in the explicit form by passing to the complex dS space. Consider the real dS space as a

boundary of the domains (
1
ζ ,

2
ζ ) ∈ D± × D∓, then let us denote the boundary values of the

function W (0)(
1
ζ,

2
ζ) as W (0)±(

1
x,

2
x). To compute these boundary values we put

1
ζ = 1

x + i
1
ε and

2
ζ = 2

x − i
2
ε, where

1
ε and

2
ε are two real infinitesimal time-like forward four-vectors and then

indeed (
1
ζ,

2
ζ) ∈ D+ × D−. It is easily seen that

1
ζA

2
ζA = 1

xA
2
xA +

i
1
x5

2
x5

(
1
ε+

2
ε) ·


 2

x

2
x5
−

1
x

1
x5


 .

Then under the above assumptions the sign of the imaginary part of
1
ζA

2
ζA does not depend on

the way in which
1
ε and

2
ε tend to zero. Let

2
xµ = 0 and

1
x · 1

x � 0, then
1
ζA

2
ζA = 1

xA
2
xA − i0ε(

1
x0).

The case of backward
1
ε and

2
ε (then (

1
ζ,

2
ζ) ∈ D− × D+) may be considered in the completely

analogous way. Then

W (0)±(
1
x,

2
x) = π2

2
e−πµR

2F1


−σ ∗0 ,−σ0; 2; 1−G± i0ε(

1
x0)

2


 (3.24)

where G = R−2 1
xA

2
xA. As (

1
ζ,

2
ζ) ∈ D+ × D− yields (

2
ζ,

1
ζ) ∈ D− × D+, then we get

W (0)+(
1
x,

2
x) = W (0)−(

2
x,

1
x) (3.25)

(cf proposition 2.2 of [1]) and by the virtue of (3.23) the propagator is equal to

G(0)(
1
x,

2
x) = W (0)+(

1
x,

2
x)−W (0)−(

1
x,

2
x).
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The function W (0)−(
1
x ,

2
x ) coincides to within the constant multiplier with the propagator

obtained in [9] starting from the demands of satisfaction of the Klein–Gordon equation and
the boundary conditions. This function may be obtained by summation over the modes [10]
and also by the method of discrete lattice [18].

As we assume that
1
x · 1

x � 0 then 1−G
2 � 1. However, the integral (3.22), with which

we define the hypergeometric function, makes no sense at z ∈ [1,+∞) and the integral then
demands the analytic continuation in the domain which contains the mentioned interval. To
this end we shall use the formulae [17]

u1 = 8(c)8(b − a)

8(c − a)8(b)
u3 +

8(c)8(a − b)

8(c − b)8(a)
u4

u2 = 8(a + b + 1− c)8(b − a)

8(b + 1− c)8(b)
e∓iπau3 +

8(a + b + 1− c)8(a − b)

8(a + 1− c)8(a)
e∓iπbu4

where the upper or lower sign should be chosen depending on whether Im z is greater or smaller
than zero, and u1, . . . , u4 are the Kummer solutions of the hypergeometric equation

u1 = 2F1(a, b; c; z)
u2 = 2F1(a, b; a + b + 1− c; 1− z)

u3 = (−z)−a
2F1(a, a + 1− c; a + 1− b; z−1)

u4 = (−z)−b
2F1(b, b + 1− c; b + 1− a; z−1).

The functions u1, u3, u4 are holomorphic at z < 0. Then at a + b + 1 = 2c

u2|z+i0
z−i0 = i(eπµR + e−πµR)θ(−z)u1 z �= 0. (3.26)

To obtain the behaviour of u2 at z = 0 we shall use the formula [17]

2F1(a, b; a + b −m; z) 1

8(a + b −m)

= 8(m)(1− z)−m

8(a)8(b)

m−1∑
n=0

(a −m)n(b −m)n

(1−m)nn!
(1− z)n

+
(−1)m

8(a −m)8(b −m)

∞∑
n=0

(a)n(b)n

(n + m)nn!
[h̄n − ln(1− z)](1− z)n

which holds at | arg(1− z)| < π , and the formulae

z−1|z+i0
z−i0 = −2π iδ(z)

8

(
1

2
+ z

)
8

(
1

2
− z

)
= π

cos(πz)
.

Then using (3.26) we obtain

2F1(−σ0,−σ ∗0 ; 2; z)|z+i0
z−i0 = −i(eπµR + e−πµR)

×
(

δ(1− z)

µ2 + (4R2)−1
− θ(z− 1)2F1(−σ0,−σ ∗0 ; 2; 1− z)

)
. (3.27)

Putting together the above expression and (3.24) we finally obtain

G(0)(
1
x,

2
x) = −iπ2(1 + e−2πµR)ε(

1
x0− 2

x0)

×
[

δ(1 + G)

µ2 + (4R2)−1
− 1

2
θ

(
−1 + G

2

)
2F1

(
−σ0,−σ ∗0 ; 2; 1 + G

2

)]
. (3.28)

To within the constant multiplier, the above expression coincides with that obtained previously
starting from the demands of satisfaction of the Klein–Gordon equation and the boundary
conditions [11].
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4. Spinor field

4.1. The Dirac equation

Introducing the matrices

γ 5 = iγ 0γ 1γ 2γ 3 γ̃ µ = −iγ 5γ µ γ̃ 5 = iγ 5

we can write down the generators of the four-spinor representation of the dS group in the
five-dimensional form:

J (s)AB = 1
4 [γ̃ A, γ̃ B]. (4.1)

The equalities

γ̃ Aγ̃ B + γ̃ B γ̃ A = 2ηAB (4.2)

γ̃ Aγ̃ B γ̃ C = ηABγ̃ C + ηBCγ̃ A − ηACγ̃ B + 1
2ε

ABCDEγ̃Dγ̃E (4.3)

γ̃ Aγ̃ B γ̃ Cγ̃ D = ηABγ̃ Cγ̃ D + ηBCγ̃ Aγ̃ D − ηACγ̃ Bγ̃ D

+2(ηADJ (s)BC + ηCDJ (s)AB − ηBDJ (s)AC)− εABCDEγ̃E (4.4)

hold. With the help of the above expressions and (3.6), (3.7) we obtain

R2C
(s)
2 = 5

2 W
(s)
A = 3

4 γ̃A R2C
(s)
4 = 45

16 . (4.5)

Comparing the above expression with (3.8) we see that it is the representation π 3
2 ,

3
2
. We shall

choose the standard form of γ -matrices. Then it is easy to show that the explicit form of
generators is

Π+(s) = 1

R

(
0 −σ

0 0

)
Π−(s) = 1

R

(
0 0
σ 0

)

P 0(s) = 1
2

(
1 0
0 −1

)
J

(s)
ik = −iεikl

(
σ l 0
0 σ l

)
.

(4.6)

We denote matrices of finite transformations as U(g). Then we obtain

U(-±(a)) = 1−Π±(s)aR

U(-0(ε)) = exp(−P
(s)
0 ε).

Let us consider the representation π 3
2 ,

3
2
⊗ νm,0. Its generators are the sum of

generators (3.11) (orbital part) and generators (4.1) (spin part). Then the second-order Casimir
operator is equal to

C2 = C
(l)
2 + C

(s)
2 − R−2J (s)ABJ

(l)
AB.

Denoting ∇̂dS = −R−1J (s)ABJ
(l)
AB we obtain

C2 = � +
∇̂dS

R
+

5

2R2
. (4.7)

To compute the fourth-order Casimir operator we write, according to (3.12) and (4.5):

RWA = − 1
8εABCDEγ̃

Bγ̃ CJ (l)DE + 3
4 γ̃A.

For squaring WA it is necessary to use formulae (4.2)–(4.4). The result obtained,

C4 = 3

4
� +

3∇̂dS

4R
+

45

16R2
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is in agreement with (3.10) at s = 1
2 and (4.7). From the second Shur’s lemma it follows that

the operators ∇̂dS and � should have fixed eigenvalues in the irreducible representations. Then
using (3.9), (4.7) and the equality

∇̂2
dS =

1

4R2
γ̃ Aγ̃ B γ̃ Cγ̃ DJ

(l)
ABJ

(l)
CD = �−3∇̂dS/R

we obtain the quadratic equation for eigenvalues of ∇̂dS. Solving it yields

∇̂dS = −2R−1 ± iµ
� = −µ2 ∓ iR−1µ− 2R−2 (4.8)

whereµ2 = m2− 1
4R2 . Asm2 > 1

4R2 (see, section 3.1), thenµ is a real number. The appearance
of two signs indicates that two identical irreducible representations have appeared:

νm,0 ⊗ π 3
2 ,

3
2
= 2νm, 1

2
.

Using (3.11) we can write

∇̂dS = 8µ∂µ 8µ = χγ µ +
1

2R
[γ µ, γν]xν.

Choosing the representation which corresponds to the lower sign in (4.8) we finally obtain the
group theoretical Dirac equation over the dS space:

i8µ∂µψ − (µ− 2iR−1)ψ = 0. (4.9)

This was well known previously outside the context of dS group irreducible
representations [19].

The above equation admits the transformation into the covariant form. To this end let us
perform the transformation D = Vψ , where

V = (1− εµε
µ)−

1
2 (1 + γµε

µ) εµ = xµ

R(χ + 1)
.

Then (4.9) becomes

iV8µV −1(∂µD + (V ∂µV
−1)D)− (µ− 2iR−1)D = 0. (4.10)

It is easy to show that

V8µV −1 = e
µ

(ν)γ
ν

∂µ + V ∂µV
−1 = Dµ − 1

2R
γµ

(4.11)

where e(µ)ν is the vierbein which is orthonormal with respect to the metric (3.1):

e(µ)ν = ηµν +
xµxν

R2(χ + 1)

and Dµ is the spinor covariant derivative

D(µ) = eν(µ)∂ν − 1
2J

(s)νρGνρµ Gνρµ = eσ(ν);κe(ρ)σ e
κ
(µ) =

1

R2(χ + 1)
(xνηµρ − xρηνµ).

Then putting together (4.10), (4.11) we finally obtain

iγ µeν(µ)DνD = µD.

Other more complicated ways of transformation of the (anti-)dS-invariant Dirac equation to
the covariant one were proposed in [7, 13].
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4.2. Spinor CS

In [2] it was shown that the solutions of equation (4.9) may be obtained in the form of the
product of scalar CS with an imaginary shift of a mass, and basic Dirac four-spinors. However,
this is not the natural action of the full dS group over these four-spinors. This difficulty may
be overcome if we consider 4 × 2 matrices whose columns are the mentioned four-spinors.
Indeed, let us denote the constant 4 × 2 matrices as A,A′, A′′ and define over such matrices
the weak equivalence relation ∼ and the strong one ! as

A′ ∼ A′′ ⇔ A′ = A′′B B ∈ GL(2,C)

A′ ! A′′ ⇔ A′ = A′′B B ∈ SU(2).

Also we define the product of two 4 × 2 matrices A′ and A′′ as A′A′′, where the upper line
denotes the Dirac conjugation. Consider the left action of the four-spinor representation of the
dS group over these matrices: g : A �→ U(g)A. It is easy to show that the matrices

|+〉 =
(
I2

02

)
|−〉 =

(
02

I2

)

(where I2 is the unit 2 × 2 matrix) are invariant under transformations which belong to the
subgroups K± ≡ T ±�(T 0 ⊗R) to within the weak equivalence relation. In the terms of the
strong equivalence relation we have

U(h)|±〉 ! (α±v (h))−
1
2 |v=0|±〉 h ∈ K±.

From the other hand, it is easily seen that the subgroups K± are the stability subgroups of
the vector w = 0 concerning the conformal action (3.17) of the dS group. This allows us
to identify the SO(4, 1)/K± space with the space R

3 of vectors w. As the lifting from the
SO(4, 1)/K± space to the dS group we shall take the transformation which transforms the
origin into the point w:

SO(4, 1)/K± � w �→ gw = -∓(−w) ∈ SO(4, 1).

Then the CS system for the SO(4, 1)/K± space, being dS invariant to within the weak
equivalence relation, is

|w±〉 = U(gw)|±〉
|w+〉 =

(
I2

σw

)
|w−〉 =

(−σw

I2

)
.

With the help of (2.1) the transformation properties of these vectors with respect to the strong
equivalence relation may be written as

U(g1)|w±〉 ! (α±v (g−1
w′ g1gw))

− 1
2 |v=0|wg1±〉 g1 ∈ G. (4.12)

As the transformations T ±
σ (g) compose a representation of the dS group then

α±v (g2g1) = α±v (g2)α
±
v′(g1) g1, g2 ∈ G v′ = vg−1

2
.

Then using the above expression and (2.1) we get

α±v (g1) = α±v′(g
−1
w′ g1gw) v′ = vg−1

w′
w′ = wg1 .

Putting v = w′ in the above expression, we can rewrite the transformation properties (4.12)
as

(α±w(g))
1
2 U(g)|wg−1±〉 ! |w±〉 g ∈ G. (4.13)



Quantization by the generalized coherent states 5089

It is easy to show that the equalities

(γ · kw ∓ 1) |w±〉 = 0 (4.14)

|w±〉〈w ± | = 1− w2

2
(γ · kw ± 1) (4.15)

are correct. Now let us construct the 4× 2 matrix functions

1
( 1

2 )±
w (x) = 1(0)±

w (x; σ0 − 1
2 )|w±〉.

Using (4.14) we obtain that they obey (4.9):

(i∇̂dS − µ + 2iR−1)1
( 1

2 )±
w (x) = 0.

These solutions are much simpler than those obtained by the method of separation of
variables [4, 5].

From the transformation properties (3.19) and (4.13) it follows that, under the

transformations from the dS group, the functions 1
( 1

2 )±
w (x) transform just as the functions

1(0)±
w (x; σ0), to within the constant matrix transformation:

1
( 1

2 )±
w (xg) ! (α±w(g))σ0U(g)1

( 1
2 )±

w′ (x) (4.16)

where w′ = wg−1 . As the inversion w �→ −w/w2 yields

1
( 1

2 )±
−w/w2(x) ! −i(−w2)−σ01

( 1
2 )∓

w (x)

then the functions 1
( 1

2 )+
w (x) and 1

( 1
2 )−

w (x) yield the same two-point function. Let us define it
as follows:

1
8W ( 1

2 )(
1
x,

2
x) =

∫
R3

d3w1
( 1

2 )+
w (

1
x)1

( 1
2 )+

w (
2
x) =

∫
R3

d3w1
( 1

2 )−
w (

1
x)1

( 1
2 )−

w (
2
x).

From (4.16) it follows that it is dS invariant in the sense that at g ∈ G
W ( 1

2 )(
1
xg,

2
xg) = U(g)W ( 1

2 )(
1
x,

2
x)U(g).

Using (4.15) it is easy to show that

W ( 1
2 )(

1
x,

2
x) = 1

2

∫
S3

d3l

l5


 1
x0 + la

1
xa

R



−iµR−2 

 2
x0 + la

2
xa

R




iµR−2

(γ 0 + γl + l5).

As the functions 1
( 1

2 )±
w (ζ ) inherit the analyticity properties of functions ϕ(0)±

k (ζ ; σ0) over the

complex dS space, then, similarly to the spin-0 case, the function W ( 1
2 )(

1
x ,

2
x ) converges at

(
1
ζ,

2
ζ) ∈ D+ × D−. Choosing the points according to (3.21) and using the equality∫ π

0
dθ sin2 θ cos θ(cosh v + sinh v cos θ)−iµR−2

= π

sinh v

(
2F1

(
1− iµR

2
,

1 + iµR

2
; 2;− sinh2 v

)

− cosh v2F1

(
1 +

iµR

2
,

1− iµR

2
; 2;− sinh2 v

))
,

we obtain

W ( 1
2 )(

1
ζ,

2
ζ) = π2e−πµR

µ− iR−1

×γ̃A
1
ζA(i∇̂dS − µ + iR−1)2F1

(
2− iµR, 1 + iµR; 2; 1− ρ

2

)
γ 5 (4.17)

where the operator ∇̂dS acts on the coordinates
1
ζ.
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4.3. Quantized spinor field

To construct a quantized spinor field, let us use the equality

R−1γ̃ AxA(i∇̂dS − µ + 2iR−1)R−1γ̃ BxB = i∇̂dS + µ + 2iR−1.

From here it follows that if the function ψ obeys the Dirac equation (4.9), then the function
γ̃ AxAψ obeys the same equation with the opposite sign of µ. The functions

1̃
( 1

2 )±
w (x) = R−1γ̃ AxA1

(0)±
w (x; σ ∗0 − 1

2 )|w±〉
then obey equation (4.9). Let us also introduce two sets of fermionic creation–annihilation
operators b(±)(w) and b(±)†(w), which at the same time are the matrices of dimensionality
2× 1 and 1× 2, respectively, and obey the anticommutation relations

{b(±)(w), b(±)†(w′)} = δ(w,w′)
(

1 0
0 1

)
(4.18)

and all other anticommutators vanish. Then we can construct the quantized spinor field as

φ( 1
2 )(x) =

∫
R3

d3w (1
( 1

2 )+
w (x)b(+)(w) + 1̃

( 1
2 )−

w (x)b(−)(w)). (4.19)

Using (4.17) it is easy to show that the two-point function which corresponds to the solutions

1̃
( 1

2 )±
w (x) is equal to∫

R3
d3w 1̃

( 1
2 )±

w (
1
ζ)1̃

( 1
2 )±

w (
2
ζ) = R−2γ̃ A

1
ζAW ( 1

2 )(
2
ζ,

1
ζ)(γ 5γ̃ B

2
ζBγ

5) = −W ( 1
2 )(

1
ζ,

2
ζ). (4.20)

Further, the hypergeometric functions in the rhs of (4.17) differ from W (0)(
1
ζ,

2
ζ) only by the

constant multiplier and the imaginary shift of mass, µ → µ + iR−1. Then computing the
difference of its values on the edges of the cut z ∈ [1,+∞) we can use (3.27). Passing to the
boundary values, equation (4.20) yields

R−2γ̃ A 1
xAW ( 1

2 )+(
2
x,

1
x)(γ 5γ̃ B 2

xBγ
5) = −W ( 1

2 )−(
1
x,

2
x)

which is analogous to equation (3.25) for the spin-0 case. Then using (3.27) for the spin- 1
2

propagator,

{φ( 1
2 )

α (
1
x), φ

( 1
2 )

β (
2
x)} ≡ 1

8G
( 1

2 )

αβ (
1
x,

2
x) = 1

8 (W
( 1

2 )+
αβ (

1
x,

2
x)−W ( 1

2 )−
αβ (

1
x,

2
x))

where α, β = 1, . . . , 4 are spinor indices, we finally obtain

G( 1
2 )(

1
x,

2
x) = 2π2

µ− iR−1
(1− e−2πµR)ε(

1
x0− 2

x0)γ̃A
1
xA(i∇̂dS − µ + iR−1)

×
[

δ(1 + G)

µ(µ + iR−1)
− 1

2
θ

(
−1 + G

2

)
2F1

(
2− iµR, 1 + iµR; 2; 1 + G

2

)]
γ 5

where the operator ∇̂dS acts on the coordinates
1
x . The above expression coincides with the

solution of the Cauchy problem for the Dirac equation over the dS space obtained in [7], to
within a constant multiplier.
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5. Concluding remarks

To summarize the results of this paper, we can say that the CS method allows us to quantize
massive spin-0 and - 1

2 fields over the dS space in a uniform way. Both in the spin-0 case
and in the spin- 1

2 one, the starting-point is the invariant wave equations which correspond to
irreducible representations of the dS group. The solutions of these equations are constructed
using CS for the dS group. In the spin-0 case, the dS-invariant Klein–Gordon equation
is satisfied by the scalar CS itself. In the spin- 1

2 case, the solutions of the dS-invariant
Dirac equation are constructed from two different CS systems which correspond to different
representations of the dS group and different stationary subgroups. Both in the spin-0 case
and in the spin- 1

2 one, these sets of solutions possess the same transformation properties under
the dS group, with the only difference being that the constant matrix transformation is added
in the spin- 1

2 case.

From these sets of solutions we can construct the two-point functions W (s)(
1
x,

2
x) which

have the following properties:

(a) dS invariance:

W ( 1
2 )(

1
xg,

2
xg) = Us(g)W ( 1

2 )(
1
x,

2
x)Us(g)

where Us(g) is the identical representation at s = 0 and the four-spinor representation at
s = 1

2 .
(b) Causality:

W (s)(
1
x,

2
x) = W (s)(

2
x,

1
x)

1
xA

2
xA > −R2.

(c) Regularized function W (s)(
1
x,

2
x) is the boundary value of the function W (s)(

1
ζ,

2
ζ) which is

analytic in a certain domain of the complex dS space.

For the spin-0 case the above properties were proved in [1]; but also in this case the CS method
gives a sufficient simplification since property (a) is almost immediately obvious. Defining
the creation–annihilation operators so that they possess the necessary (anti-)commutation
relations, we can construct the quantized fields φ(s)(x) using the mentioned sets of solutions;
the propagators of these fields are equal to

[φ(s)(
1
x), φ

(s)
(

2
x)]± = 1

8 (W (s)(
1
x,

2
x)−W (s)(

2
x,

1
x))

and therefore are dS invariant and causal automatically.
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